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EXECUTIVE SUMMARY

CONNECTED VEHICLE CORRIDOR
DEPLOYMENT AND PERFORMANCE

MEASURES FOR ASSESSMENT

Motivation

In November 2016, the American Association of State Highway

and Transportation Officials (AASHTO) announced the signal

phase and timing (SPaT) challenge to state and local agencies to

kick-start infrastructure deployments for V2I communications.

The challenge involved the deployment of dedicated short-range

communication (DSRC) infrastructure with SPaT broadcasts

(current intersection signal light phase) on at least 20 signalized

intersections in all 50 states by 2020.

Although the roadmap for agencies to partner with the auto-

motive industry is still evolving, it is important for Indiana to not

only support the SPaT challenge but also identify mutually bene-

ficial opportunities for INDOT to partner with the automotive

industry because Indiana has the second largest automotive-

related gross domestic product (GDP) in the country.

Study

During this study, connected traffic signal infrastructure was

deployed at several locations around the state. SPaT message

deployment was done using both DSRC and cellular communica-

tions. This report details the deployment locations, the various

public- and private-sector stakeholders that were engaged during

the field-testing, and the several vehicle-infrastructure commu-

nication experiments that were used to evaluate connected vehicle

use cases.

Results

The findings of this research were as follows:

1. The team successfully demonstrated use cases for placing

virtual vehicle detection calls using basic safety messages

(BSMs) and evaluated latency.

2. The team developed a scalable methodology for characteriz-

ing the probability of a traffic signal phase changing by time

of day. This methodology using agency traffic signal data for

green light prediction and engine shutdown at red lights is

particularly useful to the automotive industry.

3. The team successfully demonstrated that split failures,

reduced roadway friction, and hard braking events can be

identified on the vehicle and then transmitted to an agency.

This enhanced probe data information is particularly

valuable to agencies for identifying traffic signal timing pro-

blems, segments impacted by winter weather, and locations

where drivers are encountering roadway conditions that

require hard braking.

4. DSRC provides the lowest latency communication but, in

general, commercial cellular interface between vehicles and

infrastructure provided acceptable latency for most use

cases. For most applications, the team believes a commercial

cellular interface between vehicles and infrastructure is the

most scalable and feasible for an agency to maintain.

Recommendations

1. In the short-term, there is significant opportunity for placing

‘‘virtual pedestrian’’ calls at traffic signals for users with

mobility challenges or for emerging robot delivery vehicles

that need to cross the street.

2. The current version of the SAE J2735 SPaT definition is

ambiguous on the likelyTime and time interval confidence

fields regarding whether the elements refer to start of green

or end of green. It is recommended that protocol documen-

tation and messages be updated to support confidence

estimates for both start and end of green.

3. Develop a partnership with the automotive sector to obtain

enhanced probe data that identify traffic signal phases that

experience split failures, locations with hard braking events,

and segments with reduced friction.

4. The automotive industry has assumed that traffic signal

phases behave deterministically; however, modern traffic

signals operate much more stochastically. Longer term, it

might be worthwhile to have a ‘‘phase-next’’ data flag

provided by signal controllers. This would inform the vehicle

of a deterministic window to update their phase predictions

5 to 7s prior to the start of the next phase.

5. It might also be worthwhile to reconsider strategies on running

the ‘‘free’’ timing plan overnight. Free operation, based purely

on random arrivals, can make the traffic signal predictions

even more challenging than coordinated and adaptive systems.
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1. PROJECT OVERVIEW

1.1 Introduction

In 2011, the U.S. Department of Transportation
(USDOT) announced the ‘‘Connected Vehicle (CV)
Program’’ that allows vehicles to communicate with
other vehicles (V2V), infrastructure (V2I) and other
devices (V2X) to improve safety, mobility and reduce
environmental impacts like fuel consumption and
emissions (Hill et al., 2013; U.S. Department of Trans-
portation, n.d.a). In November 2016, the American
Association of State Highway and Transportation
Officials (AASHTO) announced the signal phase and
timing (SPaT) challenge to state and local agencies to
kick start infrastructure deployments for V2I commu-
nications (AASHTO, n.d.). The challenge involved the
deployment of dedicated short-range communication
(DSRC) infrastructure with SPaT broadcasts (current
intersection signal light phase) on at least 20 signalized
intersections in all of the 50 states by 2020.

Although the AASHTO SPaT challenge is specific
on the number of units to deploy and target date, it
provides little guidance on what states should do with
the technology once deployed. This report outlines the
efforts led by INDOT and Purdue University to test
both cellular and DSRC deployments in the State of
Indiana. Engagement with critical stakeholders that
lead to early use case development and the lessons
learned from the implementation of CV technology are
discussed in detail.

1.2 Dissemination of Research Results

The following is a list of papers prepared in part
during the course of this project.

N Li, H., Wolf, J. C., Mathew, J. K., Navali, N., Zehr, S.

D., Hardin, B. L., & Bullock, D. (2019). Leveraging

connected vehicles to provide enhanced roadway condition

information [Manuscript submitted for publication].

Lyles School of Engineering, Purdue University.

N Mathew, J. K., Li, H., Morgan, B., Kim, W., & Bullock,

D. (2019). Probabilistic distributions of coordinated traffic

signal phase indications for connected vehicle applications

[Paper presentation]. Annual Meeting of Transportation

Research Board 98th Annual Meeting, Washington

D.C., United States.

N Mathew, J. K., Li, H., & Bullock, D. (2019). Signal green

time estimation method for connected vehicle-to-infrastruc-

ture applications [Paper presentation]. IEEE International
Conference on Connected Vehicles and Expo (ICCVE)

8th Annual Meeting, Graz, Austria.

N Mathew, J. K., Li, H., & Bullock, D. (2020). Populating

SAE J2735 message confidence values for traffic signal

transitions along a signalized corridor [Manuscript sub-

mitted for publication]. Lyles School of Engineering,
Purdue University.

N Li, H., Platte, T., Mathew, J. K., Smith, B., Salividar-

Carranza, E., & Bullock, D. (2020). Using connected

vehicle data to reassess dilemma zone performance of

heavy vehicles [Manuscript submitted for publication].
Lyles School of Engineering, Purdue University.

N Kim, W., Li, H., Mathew, J. K., & Bullock, D. (2020).
Analytical techniques to use historical connected vehicle
data to assess platooning potential on interstate corridors
[Manuscript submitted for publication]. Lyles School of
Engineering, Purdue University.

N Salividar-Carranza, E., Kim, W., Li, H., Mathew, J. K.,
Sturdevant, J., & Bullock, D. (in press). Effects of a
probability-based green light optimized speed advisory on
dilemma zone exposure (SAE Technical Paper 2020-01-
0116). SAE International.

These technical papers were prepared throughout the
project and distributed to key INDOT stakeholders to
facilitate early implementation of the research findings.
The following sections of the technical report summarize
key findings and reference the Appendices that contain
these targeted implementation papers.

2. IMPLEMENTATION AND ASSESSMENT OF
CONNECTED VEHICLE ARCHITECTURES

2.1 Dedicated Short Range Communication (DSRC)

2.1.1 System Components

For V2I communication to occur using DSRC, the
system requires a V2X-capable traffic signal controller
(Figure 2.1a), a co-processor card (CVCP, Figure 2.1b),
a roadside unit (RSU, Figure 2.1c) installed at an
intersection, and an onboard unit (OBU, Figure 2.1d)
installed on a vehicle.

2.1.2 System Architecture

Figure 2.2 shows an overview of the DSRC communi-
cation workflow. The traffic signal controller (callout i)
is connected to a roadside unit (RSU) (callout ii) which
transmits and receives data wirelessly from the onboard
units (OBU) and high-fidelity GPS units (callout iii)
equipped on the vehicles provide location data. DSRC is
capable of facilitating data transfer between fast moving
vehicles and prioritizing safety messages with the dedi-
cated wireless transmission (Hill et al., 2013).

SPaT data is generated from the traffic signal con-
troller at 10 Hz. The data is sent to the CVCP to
conform the packet to the SAE J2735 Message Set
Dictionary format. From the CVCP, the data is then
sent to the RSU where it is broadcasted to OBUs.

MAP data is generated using the USDOT Connected
Vehicles Tool Library’s ISD Message Creator (U.S.
Department of Transportation, n.d.b; Figure 2.3), a
user interface which defines the intersection and its
approaches, lanes, and waypoints. Once the intersection
has been mapped, the data can be encoded via the web
application in unaligned packed encoding rules (UPER),
and converted to a base-64 text string. The base-64 text
string is then embedded into the RSU 4.1 file template
format and saved to the RSU for broadcasting to
vehicles.

BSM data is generated from an OBU typically on
startup at 10 Hz. The data contains latitude, longitude,
generation time, speed, elevation, heading, acceleration,

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/28 1



Figure 2.1 DSRC system components.

Figure 2.2 DSRC.
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path history, transmission status, brake information,
lights, and weather data. Depending on the instrumen-
ted vehicle and integration with the OBU, not all data
properties may be populated for all CV. The RSU
receives the data and its signal strength and determines
based on a preconfigured threshold whether the data

packet is within acceptable strength tolerance. If the
packet is acceptable, it can be forward to an external
host, typically the CVCP, for further processing,
logging, or triggering phase action in the controller.

SPaT, MAP, and BSM data encoded in base-64
UPER format can all be validated using the OSS



Figure 2.3 USDOT Connected Vehicles Tool Library’s ISD Message Creator.

Figure 2.4 OSS Nokalva Playground for decoding SAE 2735 strings.
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Nokalva Playground website (OSS Nokalva, n.d.;
Figure 2.4). The original SAE J2735 ASN.1 file that
defines the connected vehicle message set must be
uploaded as the schema for decoding the messages
properly.

Figure 2.5 shows the architecture in terms of the
movement of data between each of the components in a
DSRC system.

2.2 Cellular Communication

An alternative architecture that has been gaining
popularity is the cellular mode of communication
(Figure 2.6). In this method, the original equipment
manufacturer (OEM) sends vehicle data directly to the
cloud using 4G/5G cellular technology. The data from

the signal controllers (callout i) and vehicle undergo
integration in a cloud-based system (callout ii), which
then communicates it back and forth with the signal
controller and the vehicles (callout iii). The advantage
of this method is that vehicles can communicate with
the cloud as long as the cellular network is available.
With the OEM sending data to the cloud, there is less
roadway equipment and maintenance required by the
local agencies and state DOTs.

2.3 Connected Corridor and Deployment

Currently, two cities, West Lafayette and Kokomo,
support connected vehicle infrastructure (Figure 2.7).
In West Lafayette, 10 intersections along the US 231
corridor between CR 500S and US 52 (Figure 2.8a) are



Figure 2.5 Data flow for CV applications.

Figure 2.6 Cellular communications architecture.
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equipped with RSUs, interconnected with CV-enabled
controllers. In Kokomo, the intersection of Lincoln
Road and SR 931 is equipped with an RSU connected

to a CV-enabled controller (Figure 2.8b). Figure 2.9
and Figure 2.10 shows some pictures from the deploy-
ment in West Lafayette and Kokomo, respectively.



Figure 2.7 West Lafayette and Kokomo with connected vehicle infrastructure.
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Figure 2.8 Intersections with DSRC deployment.
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Figure 2.9 RSU deployment at US 231/Martin Jischke Drive in West Lafayette, IN.
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Figure 2.10 SU Deployment in Kokomo.
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3. ENGAGEMENT WITH STAKEHOLDERS

3.1 Engagement

A number of engagement activities were conducted
with federal, state, and local agencies, automotive
manufacturers, and equipment suppliers over the
duration of the project. The below sections highlight
key activities with the stakeholders that have furth-
ered use case development and implementation of CV
technology.

3.1.1 FHWA

Connected vehicle winter weather research was
presented at the FHWA Road Weather Management
Stakeholder Meeting in September 2018. The research
team was also selected for FHWA’s Cooperative Auto-
mation Research Mobility Applications (CARMA)
program as part of the Road Weather Management
task force beginning March 2019 that supports the
testing and evaluation of CAV research.

3.1.2 Peer States

Researchers have engaged ten peer states on
development, implementation, and challenges of CV
technology in the area of traffic signal applications.
A meeting in March 2019 was held as part of
Transportation Pooled Fund Program’s TPF-5(377)
Enhanced Traffic Signal Performance Measures. Split
failures, winter driving, dilemma zone protection using
virtual detection zones, SAE green signal confidence

intervals and likelyTime, and red light running at
signalized intersections were identified to be key per-
formance measures. Connected vehicle winter wea-
ther research was also presented at the AASHTO
Maintenance Committee summer meeting in July
2019 (Figure 3.1).

3.1.3 Local Agency

Researchers engaged the City of West Lafayette on
the application of CV technology for micro-mobility
modes in Q2 2019 (Figure 3.2). Through collaboration
with the city, two new performance measures were
developed to assess pedestrian safety and pedestrian-
vehicle conflicts that will be key use cases on facilities
with high penetration of CV and pedestrian volumes.

3.1.4 APTIV and Cohda Wireless

In collaboration with the INDOT Traffic Man-
agement Center, researchers engaged with APTIV from
Q4 2018 to Q2 2019 on the development of SPaT and
MAP messaging software for traffic signal controllers,
and implementation, deployment, and testing in the
Indiana testbed (Figure 3.3). Key use cases identified
were emergency vehicle preemption, workzone vehicle
safety, and Green Light Optimized Speed Advisory
(GLOSA). Cohda Wireless provided hardware and
support for OBU and RSU and integration software.
APTIV validated the implementation in Kokomo with
an instrumented vehicle and software. INDOT execu-
tive meeting was held at APTIV in April 2019.



Figure 3.1 Meeting with peer states.
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Figure 3.2 Meeting with City of West Lafayette, June 2019.

3.1.5 Volkswagen of America

Researchers engaged with Volkswagen of America
Electronics Research Laboratory (VW-ERL) from Q4
2017 through Q4 2018 on developing use cases for CV
technology (Figure 3.4). Two cases were implemented
and tested in Indiana: Traffic Light Indication (TLI)
and enhanced probe data for winter weather applica-
tions. A loan vehicle was provided to Purdue during
the collaboration. Research outcomes were presented in
the FHWA Road Weather Maintenance Meeting in
2018, the TRB 2019 Annual Meeting, 2019 Purdue
Road School, and the 2019 AASHTO Maintenance
Committee summer meeting.

3.1.6 Ford

Researchers engaged with Ford Motor Co. in Q1
2019 to develop three key use cases for CV deployment:
(1) split failure at signalized intersections; (2) enhanced
probe data for winter weather driving at signali-
zed intersections; and (3) road roughness detection
(Figure 3.5).

3.1.7 Trimble

Researchers engaged with Trimble during Q1 through
Q3 2019 to develop uses cases and implement mobile
applications for a back-of-queue warning system and



Figure 3.3 Collaboration with APTIV and Cohda Wireless.
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Figure 3.4 Collaboration with VW-ERL.



Figure 3.5 Collaboration with Ford Motor Co.

Figure 3.6 Collaboration with Trimble.
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slow-moving vehicle alert on state highways (Figure 3.6).
The use cases developed aims to address safety improve-
ments for heavy vehicles using CV technology.

3.2 Summary of Developed Used Cases

Use cases developed from engagements were
presented to and discussed with INDOT colleagues
throughout the project. Eight key use cases were
identified to be relevant and useful to Indiana are
summarized below:

1. enhanced probe data to detect winter conditions;

2. split failure at signalized intersections;

3. green time probabilities to provide accurate GLOSA

information;

4. dilemma zone protection for heavy vehicles using virtual

detection zones;

5. road roughness detection;

6. back-of-queue alert for heavy vehicles;

7. slow-moving vehicle alert; and

8. pedestrian safety.

4. SUMMARY OF FINDINGS

4.1 Performance of DSRC

The current implementation of infrastructure (RSU)
to vehicle (OBU) CV technology sends SPaT and MAP,
and receives BSM at 10 Hz. BSM packets received from
the vehicle can configured by the RSU to either be
accepted or dropped based on a signal strength thres-
hold. For testing during this study, a threshold of -82
dBm or greater is accepted. Field tests indicated the
range of DSRC to be approximately 1,1009 with an
RSU mounted at 159 off the ground, and up to 1.1
miles with a mount at the top of a signal pole, which is
the typical installation for Indiana corridors. Placement
of the OBU antenna on the vehicle was found to have
an effect on the range of the signal up to about 1,0009.

4.1.1 Waypoint Matching

A set of virtual waypoints containing latitude, lon-
gitude, a range of acceptable heading, and associated



lane and phase information is preloaded on the CVCP,
where an application persistently listens for new BSMs.
Each BSM is decoded and its latitude and longitude
matched to the set of virtual waypoints. If the vehicle
location is in proximity of a waypoint within the range
of acceptable heading, a call is placed via NTCIP for

the associated phase. All BSMs, successful waypoint
matches, and phase calls are logged locally on the co-
processor. (See Figure 4.1.)

With a transmit interval of 0.1s, a vehicle travelling
at 55 mph is not guaranteed to match a waypoint with a
39 radius threshold, assuming the vehicle’s trajectory,
OBU antenna, and waypoint are all reasonably cen-
tered in the lane. A study location at US 231 and CR
500S was used for testing waypoint sensitivity where
22 waypoints spaced 509 apart was used to extend the
northbound and southbound mainline phases.

At about 45 mph, out of 22 waypoints, a 39 radius
threshold had 16 out of the 22 waypoints missed, while
radii 69 and greater had no missed waypoints. The
larger radii of 99 and 129 yielded more matches per
waypoint. However, using a closest distance function
no lane encroachment was evident even from the larger
radii. If more than one waypoint was matched, the
waypoint closest to the vehicle was selected, which
performed well to exclude adjacent lanes. A 69 radius
threshold is used which covers one lane width at the
study location.

4.1.2 Latency

The spacing is the distance between the centers of
two consecutive waypoints. As the spacing increases,
the lag between matches also increases because the
vehicle needs to ‘‘traverse the gap.’’ A 509 spacing gives
an estimated lag time of 0.59s between matches at
55 mph. Figure 4.2 shows a hypothetical lag curve at
509 spacing and the crosses indicate field samples collec-
ted, which performs reasonably close to the estimating
function. Callout i is an instance where three waypoints
are missed by the vehicle when the vehicle is not
centered in the lane. Callout ii and callout iii are two
instances where four BSM messages are dropped each,

Figure 4.1 Performance of waypoint radii matching using
69 radius and 509 spacing.
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Figure 4.2 Performance of different waypoint spacings using 69 radius.



therefore missing a portion of one waypoint. Callout
iv is an instance where one waypoint is missed by the
vehicle completely and callout v is when the vehicle
veered slightly to the edge of the lane at low speed.
Callout vi shows the matches within one waypoint
which has a lag equivalent to the DSRC transmission
interval of 0.1s. At faster speeds beyond 50 mph, the
number of matches within one waypoint drops off.
Overall 83% of the samples have lower lag than the
hypothetical curve and 95% of the samples are within
5% or less.

4.2 Performance of Cellular

4.2.1 Latency

Figure 4.3 shows the connection setup between the
traffic signal and vehicle over the cellular communica-
tion. The overall latency was estimated to be around
630 ms.

4.2.2 Field Test of V2I Application Using Cellular
Communication

In October 2017, Purdue researchers collaborated
with INDOT and industry partners to develop a work-
ing prototype of the V2I communications using the
cellular standard. Data from the CV and the INDOT
signal controllers were used to deploy the traffic signal
status indications. As the vehicle approaches an
intersection, the application displays the current status
of the traffic signal (Figure 4.4) for the vehicle
movement. If the vehicle arrives during the red phase
or if the algorithm computes that the vehicle will not
make the green, the application displays a countdown

timer with the time remaining for the next green. The
early applications of this technology include eco-driving
and dilemma zone reduction. These types of systems are
now operational in several cities around the country
(Audi Newsroom, n.d.).

Tests were conducted to evaluate the performance of
this V2I application by comparing the predictions (at
30s to green, 20s to green, 10s to green, and 4s to green)
with the actual start of green. Data was gathered using
video footage and analysis was performed on 176 cycles
collected over two days. Residual plots (Figure 4.5)
were prepared to estimate the time difference between
the actual event and predicted event. Results showed
that the application can predict the mean start of green
within ¡2.7s (at 95% confidence intervals). On a cycle-
by-cycle basis, it was observed that nearly 80% of the
phase indications could be predicted within ¡5s even
with the stochastic vehicle detection and real-time con-
troller logic. Further details on the methodology, data
collection and analysis can be found in Appendix A.

4.3 Stochastic Variation of Traffic Signal Phase Green
Times

Studies on traffic signal state prediction under
connected vehicle environments have been conducted
in the past using simulation techniques (Bagheri, 2017;
Goodall, 2013). However, predictions using real-world
data, especially for actuated controllers as seen in the
previous section, is an emerging challenge. Pre-timed
systems are deterministic and easy to predict whereas
the actuated and adaptive systems introduce a lot of
stochastic variations (Figure 4.6). As vehicles start
communicating directly with traffic signal controllers,
it is important for the vehicle algorithm developers to

Figure 4.3 System latency of the cellular network for CV application.
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Figure 4.4 Time-to-green traffic light indication (TLI) application.

Figure 4.5 Residual plot evaluating the performance of TLI application.
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understand the working concepts of various traffic sig-
nal operations.

4.3.1 Multiphase Green Probability Profile

In this section we propose a new visualization tool that
provides a quantitative framework that demonstrates

the behind-the-scenes working of a complex traffic sig-
nal system. The cyclic green profiles of the four phases
(W1–W4) in a ring can be combined (a stacked area
plot of the four phases) into a multiphase probability
diagram of expected phases (Figure 4.7). Each of the
phases are represented by a distinct color and the
clearance time (yellow and all-red indication) for each



Figure 4.6 Comparison of probabilistic distribution of green for fixed and actuated coordinated systems.

Figure 4.7 Probability of expected phases for an actuated coordinated system. Callouts (a)–(k) represent the different splits that
can be served at the same period within a cycle but at different times of day.
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phase is represented by a filled hash. Vertical cross-
sections at 7s, 38s, 56s, and 77s into the cycle are
highlighted to emphasize the stochastic variation and
the occurrence of multiple phases that can happen at
the same cycle second. Table 4.1 lists the probabilities
of phase occurrences for each cycle second cross-section.
For example, at 38s within the cycle, the probability of
occurrences for phase 2, phase 4, and phase 1 (clearance)
are 31.5%, 10.5%, and 58% respectively. At any time
within the cycle, sum of all the probabilities should add

up to 1.0. More details on the development of this tool
can be found in Appendix A.

In CAV implementations, these signal state possibi-
lities can have tremendous potential for safety and
efficiency applications. For example, given a certain
vehicle location and speed as it is approaching an inter-
section, it can be calculated from the current trajectory
whether the vehicle will likely arrive at the intersection
during green, clearance, or red based on these signal
state possibilities prediction. In effect, the driver can be



alerted or the vehicle controlled automatically to slow
down (Roess, 2009). This is particularly useful for high-
speed intersections or during inclement weather when
stopping distance increases and there is a potential to
adjust arrival trajectories to increase the margin of
safety, reducing crashes and near-miss situations.

4.3.2 Populating SAE Confidence Interval Values from
Cyclic Green Profiles

V2I applications often follow the SAE Surface Veh-
icle Standard J2735 for communications (SAE Inter-
national, 2016). SAE J2735 defines a DSRC Message
Set Dictionary. Although designed for DSRC, these
messages are often used for V2I communication through
the cloud (Mathew et al., 2019; Wolf, 2019). Messages
defined in the standard include the SPaT message
that describes the intersection state per movement,
phase timing, and includes speed advisory details.
The contents of SPaT are designed to be generated

by a traffic signal controller, sent over the network,
and received and interpreted by the vehicle. However,
many of the parameters are optional as of the most
recent revision of the standard and there are no
guidelines as to how they should be populated. Of
particular interest is likelyTime, an enumerated para-
meter that describes the confidence the controller has of
the likelyTime, expressed as a percentage. The range of
values and corresponding probabilities are listed in
Table 4.2.

The cyclic green profiles and the multiphase prob-
ability visualizations can also be used to estimate the
SAE J2735 time interval confidence values. Figure 4.8
shows an example cyclic green profile with the SAE
J2735 confidence values (SAE International, 2016) on
the secondary Y-axis, matching their corresponding
probabilities (Table 4.2) on the main Y-axis. For any
time-in-cycle (TIC), the corresponding probability can
be mapped to the confidence values. The cyclic profiles
are also capable of estimating the confidence intervals

TABLE 4.1
Probability of phase occurrences within the cycle corresponding to callouts on Figure 4.7

Time in Cycle Phase 1 (W1) (%) Phase 2 (W2) (%) Phase 4 (W4) (%) Phase 3 (W3) (%) Clearance (y+r) (%)

7

38

56

77

39.8 (c)

—

0.4

31.6 (l)

37.6 (a)

31.5 (f)

—

9.6 (j)

—

10.5 (d)

—

—

—

—

45 (g)

—

23.8 (b)

58 (e)

54.5 (h) + 0.1 (j3)

58.8 (i+k)

TABLE 4.2
SAE time interval confidence values and probability

Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Probability (%) 21 36 47 56 62 68 73 77 81 85 88 91 94 96 98 100
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Figure 4.8 Populating SAE confidence interval values.



with respect to beginning-of-green (BOG) and end-of-
green (EOG).

In Figure 4.8, the BOG period between 3s and 9s have
green probabilities from 0.21 to 0.26 which fall under
the corresponding confidence value of 1 (callout i).
Between 9s and 13s the confidence value can vary from
2 to 3 (callout ii) and between 13s to 16s it can vary
from 3 to 7 (callout iii). The value then rises up to 15
during the deterministic period between 16s and 29s
(callout iv), after which it starts falling down indicating
the EOG period. From 29s to 36s in the cycle, the
confidence value drops from 15 to 8 (callout v) and
down to 3 at 39s.

4.3.3 Opportunities for Further Clarification of SAE
J2735

SAE J2735 defines the time interval confidence as ‘‘the
statistical confidence for the predicted time of signal
group state change.’’ However, it does not specify if
the status change is for the end of the current state or
beginning of next state. As seen in the earlier section,
the beginning and ending of a phase can have different
confidence values (Figure 4.8). Other studies have also
emphasized that it might be worthwhile providing two
estimates of the residual time (Ibrahim, 2019). Con-
nected vehicle applications such as green light advisory
and eco-driving require an accurate estimation of the
traffic signal status for both BOG and EOG. Currently,
with just one parameter ‘‘likelyTime,’’ it might not be
possible for applications to estimate the change in
signal status for both BOG and EOG. Further discus-
sions on the importance of providing two estimates of
residual time can be found in Appendix C.

4.4 Impact of Stochastic Variation on GLOSA

Actuated traffic signals present major challenges for
Green Light Optimized Speed Advisory (GLOSA). An
advisory system based on TIC green probabilities
calculated from historic high-resolution signal event
data does not require low-latency V2I communications

and can be scaled to a greater number of intersections.
Evaluation of the system was performed by virtually
driving through an arterial during different times of the
day and days of the week. The advisory system pro-
posed increased safety during the EOG but resulted in
increased travel times. More details of the study can be
found in Appendix D.

1. Even with an aggressive advisory approach, there was a

large reduction in red light violations and hard-braking

events by anticipating the onset of yellow, by 87.6%

and 64.8% respectively over unadvised trips (4.9). The

mean travel time increased by 4s compared to unad-
vised trips.

2. Using a balanced advisory resulted in the decrease in

the number of hard brakings by 87.3% and red-light
incursions by 94.0% (Figure 4.9). Travel time is increa-

sed by 14s for a balanced advisory compared to an un-
advised run.

3. Reductions of up to 95.8% in red light crossing, and

93.4% in hard brakings were accomplished by implement-
ing a conservative advisory approach (Figure 4.9), but the

mean travel time increased by as many as 24s.

4.5 Detection of Winter Weather Conditions Using
Enhanced Probe Data

The experiments conducted using CV in winter
weather conditions demonstrated the application of
high-frequency vehicle CAN data for estimating road
conditions. A system was deployed to collect wheel tick
and brake pressure data at 100 ms to 200 ms time
resolution using a 2017 Audi Allroad vehicle.

Modern vehicles are equipped with wheel speed
sensors that report the position of each wheel as an
integer, such as in the range of 0 to 1000, to the various
onboard control units and devices via the in-vehicle
bus. As the vehicle moves, the integer position, or wheel
tick, increments at a rate equal to the angular velocity
of each wheel. The number is reset to 0 once it reaches
the maximum within its allocated range. Figure 4.10a
shows the recorded angular velocities of each wheel
over a 3.4 second time interval during a deceleration

Figure 4.9 Vehicle performance of virtual drive using different GLOSA strategies.
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Figure 4.10 Vehicle slip detection using wheel ticks.
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event. The front driver (fd), front passenger (fp), rear
driver (rd), and rear passenger (rp) angular velocities
are plotted on the graph. Between 02:49.9 and 02:50.2,
a noticeable divergence in wheel speed is evident for the
front passenger wheel. This wheel started to travel
slower than the other three wheels, and at callout i in
Figure 4.10a this was most pronounced.

Figure 4.10b plots the differences along each side of
the vehicle. The greatest value was recorded at 02:50.3
with an absolute difference of 8 wheel ticks between
the front passenger and rear passenger wheels (Figure
4.10b, callout i). This was associated with a braking
event before a stop sign that triggered an ABS inter-
vention by the vehicle (Figure 4.10c, callout i).

Two separate winter events with independent road
friction validation were used as test cases to demon-
strate the applicability of using CAN data to monitor
changing road conditions. More details of the study can
be found in Appendix E. Key findings in this study
suggested the following:

1. A driver may reduce his or her applied braking pressure

in deteriorating road conditions up to 60% at the median

intensity.

2. The braking pressures applied during wintry conditions

were most different compared to dry conditions at speeds

between 20 mph and 39 mph where the heaviest braking

was performed.

3. The variance of the change of brake pressure was found

to be significantly different during deteriorating road

conditions.

4. Wheel slip data alone may not account for adjustments

to driving behavior that would mask actual slippery road

conditions.

5. Extreme vehicle intervention events such as traction

control and ABS were typically rare, even at locations

where very low friction values were measured.

6. Speed data alone may not be sufficient to characterize

changing road conditions on arterials.

4.6 Dilemma Zone Protection Using Virtual Detection

Experiments were conducted using CV technology
to trigger force gap out (FGO) when a vehicle was
expected to arrive within the dilemma zone limit at
max out time at a fully actuated intersection. The
method leverages position data from BSMs to map-
match virtual waypoints. Figure 4.11a shows the status
screen of the traffic signal controller one second prior
to FGO.

Callout i shows the dummy Ø9 not yet called as the
CV is still upstream of the waypoint furthest from the
stop bar. Callout ii shows the max timer for ring 1 is
within the critical threshold. The test CV enters the
waypoint area past the 1,0009 mark (Figure 4.11b).

Figure 4.11c shows the instance when the FGO is
triggered with a call on dummy Ø9 (callout iv) and the
resulting gap out (callout v). More details of the study
can be found in Appendix F.

In the near term, using similar methodology as
mentioned above, there is significant opportunity for



Figure 4.11 Field-testing of force gap out (FGO).
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placing ‘‘virtual pedestrian’’ calls at traffic signals for
uses with mobility challenges, or emerging robot deli-
very vehicles that need to cross the street (Figure 4.12).
The connected traffic signal controller can identify these
probes and place a virtual pedestrian call, when these
devices enter a certain geo-fenced area within the vicinity
of the intersection.

4.7 Leveraging Connected Vehicle Data for Identifying
Commercial Vehicle Testing Locations

There are multiple vendors that now provide real-
time probe data based on interstate speed measure-
ments at sub-1 mile, 1-minute fidelity. A series of
simulated trajectories, using 1-minute segment speed



Figure 4.12 Opportunity for autonomous delivery robots to
place virtual pedestrian calls.

archives, were used to demonstrate the robustness of a
platooning strategy by calculating travel time dynami-
cally using the segments, and analyzing the frequency of
speed changes greater than 10 mph. Speeds that have
dropped below 55 mph were also identified on the route
(Figure 4.13). Appendix F provides a complete descrip-
tion on the methodology behind this concept.

4.8 Detection of Split Failures and Estimation of Queue
Lengths

A common occurrence at over-capacity signalized
intersections are split failures. A split failure is when a
movement (phase) at an intersection does not have
enough green time (capacity) to serve the number of
vehicles (demand) for that movement (Freije et al.,
2014). Traditional in-pavement and pole-mounted
sensors are limited in the quality of data provided;
occupancy, count, and speed can be determined, but
assessing queue length, the number of split failures per
vehicle, delay, headway/gaps between vehicles, and
travel time are difficult or approximated. With high-
frequency (1s) GPS data (Figure 4.14), there is great
opportunity for the next generation of signal perfor-
mance metrics for stakeholders to make data-driven
decisions from both the infrastructure operators and
automotive manufacturers alike.

Figure 4.13 Potential platoonable sections on I-70 EB.
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Figure 4.14 High fidelity GPS trajectory data to identify split failures (callouts i–iv).
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5. DASHBOARDS

Six dashboard applications were developed from the
project. The below section provides a brief overview of
the dashboards and the applied use cases.

5.1 Platoonability

A web dashboard to identify platoonable sec-
tions of roadway was developed as a visualization
tool that gets input for route name (such as I-70 or
I-65), mile marker of the start and end position of
the route and start and end date period from the
user (Figure 5.1). Then the program generates heat
maps to show traffic speed range for each segment,
by direction, in the route in 15-minute intervals.
Camera images from locations on the routes are also
integrated to provide ground-truth. Areas that are
potentially platoonable can be identified using the
average heat map (AHM) and median heat map
(MHM).

5.2 Winter Weather Enhanced Probe Data

A web dashboard was developed to plot locations
where there were traction control interventions, ABS,
hazard lights on and off, windshield wipers, tempera-
ture, and vehicles heading on a Google Maps overlay.
The data was forwarded from a logging computer
directly connected to the in-vehicle bus to Purdue
servers that processed the information to be presented
on the dashboard (Figure 5.2).

5.3 CV Telemetry

In a DSRC V2I implementation, all BSMs, success-
ful waypoint matches, and phase calls are logged locally
on the CVCP. In addition, the BSMs are uploaded to
the back-office where it is stored using Apache Kafka,
a fast stream processing platform capable of handling
large volumes of data for future scalability. A web
application then retrieves data from the platform where
vehicle position, speed, heading, elevation, g-force,
waypoint locations, and number of messages in the
queue are displayed on a user interface (Figure 5.3a).
The system can also be used for micro-mobility modes
(Figure 5.3b).

5.4 Traffic Signal Status Probability Dashboard

A web dashboard was developed for visualizing green
probabilities over customizable time-of-day and day-of-
week periods using historic high-resolution controller
data (Figure 5.4). The software can also calculate the
accuracy of historic probabilities when applying to a
target date, useful for estimating hypothetical GLOSA
performance in the field.

5.5 GLOSA HMI

A real-time dashboard was developed to provide
phase probability information using historical data to
a vehicle on travelling along US 231 in West Lafayette
during actuated-coordinated operation (Figure 5.5).
The application displays the current vehicle’s speed,



Figure 5.1 Integrated heat map and camera image dashboard.

Figure 5.2 Winter weather hazardous conditions dashboard.
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Figure 5.3 CV telemetry dashboard using a scooter.

Figure 5.4 Traffic signal status probability dashboard.
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Figure 5.5 GLOSA dashboard.

Figure 5.6 Maintenance operations/slow moving vehicle app.
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green probability at arrival to the next intersection,
integrated with cruise control speed setting, and audible
speed advisory and stop-or-go decision, brake pressure,
and cumulative fuel consumption, and is fully integra-
ted with video input.

5.6 Maintenance Operations/Slow Moving Vehicle
Mobile App

Joint collaboration between JTRP and Trimble Maps
led to the development of a mobile app (Figure 5.6) that
alerts motorists of dangerous slowdowns ahead due
to maintenance operations or slow-moving vehicles.
INDOT crews will indicate the type of maintenance
activity and the number of lanes affected through
the app, which then provides an in-cab alert to
motorists within the area. Currently, motorists with
access to Trimble Maps’ Co-Pilot system will receive
the notification.

6. SUMMARY AND RECOMMENDATIONS

This report summarizes the work performed to
deploy connected vehicle infrastructure on 11 inter-
sections across Indiana. SPaT message deployment
was done using both traditional dedicated short-range
communication (DSRC) as well cellular communica-
tion and objective performance measures from use
cases that exercise both architectures are outlined in
this study.

Some of the key takeaways from the research out-
lined in this report are:

N DSRC provides the lowest latency communication, but
in general commercial cellular interface between vehicles
and infrastructure provided acceptable latency for most
use cases. For most applications, the team believes a com-
mercial cellular interface between vehicles and infrastruc-
ture is the most scalable and feasible for an agency to
maintain.

N The team developed a scalable methodology for char-
acterizing the probability of a traffic signal phase chang-
ing by time of day. This methodology of using agency
traffic signal data for green light prediction and engine
shutdown at red lights is particularly useful to the
automotive industry (Appendix A).

N The team evaluated the performance of optimal speed
advisories for arriving on green light and found that
there was a large reduction in red light violations and
hard-braking events by anticipating the onset of yellow,
by 87.6% and 64.8% respectively over unadvised trips
(Appendix D).

N The team successfully demonstrated that split failures,
reduced roadway friction and hard braking events can be
identified on the vehicle and transmitted to an agency.
This enhanced probe data information is particularly
valuable to agencies for identifying traffic signal timing
problems, segments impacted by winter weather and
location where drivers are encountering roadway condi-
tions required hard braking (Appendix E).

N The team successfully demonstrated use cases for placing
virtual vehicle detection calls to a traffic signal controller
using SPaT messages and evaluated latency. Dilemma

zone incursions for heavy vehicles were found to be

reduced by a net of 34% using CV technology by

triggering advance detections as early as 10009 from the

stop bar (Appendix F). In the near term, there is

significant opportunity for placing ‘‘virtual pedestrian’’

calls at traffic signals for uses with mobility challenges, or

emerging robot delivery vehicles that need to cross the

street.

N The team also evaluated the potential of historic

connected vehicle data to identify strategic and tactical

locations as well as candidate time periods viable for

commercial vehicle testing (Appendix G).

Major recommendations from this study include:

N The current version of the SAE J2735 SPaT definition is

ambiguous on the likelyTime and time interval confidence

fields whether the elements refer to start of green or end

of green. It is recommended that protocol documentation

and messages be updated to support confidence estimates

for both start and end of green.

N Develop partnership with the automotive sector to

obtain enhanced probe data that identifies traffic signal

phases that experience split failures, locations with hard

braking events, and segments with reduced friction.

N The automotive industry is accustomed to tight toler-

ances; however, modern traffic signals operate much

more stochastically. Longer term, it might be worthwhile

to have a ‘‘phase-next’’ data flag provided by signal

controllers to inform the vehicle of a deterministic

window to update their phase predictions 5s to 7s prior

to the start of the next phase.

N It might also be worthwhile to reconsider strategies on

running the ‘‘free’’ timing plan overnight. Free operation

is based purely on random arrivals, can make the traffic

signal predictions even more challenging than coordi-

nated and adaptive systems.

As vehicles begin to know more about the state of the
infrastructure than agencies, it vital for traffic engineers
and automotive partners to work together and develop
shared visions for connected vehicle applications. The
recommendations from this report and the lessons
learned from the early use cases will aid Indiana to
become an important stakeholder and help shape this
emerging field of connected and autonomous vehicles.
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APPENDICES

APPENDIX A. PROBABILISTIC DISTRIBUTIONS
OF COORDINATED TRAFFIC SIGNAL PHASE
INDICATIONS FOR CONNECTED VEHICLE
APPLICATIONS

Mathew, J. K., Li, H., Morgan, B., Kim, W., &
Bullock, D. (2019). Probabilistic distributions of coordi-
nated traffic signal phase indications for connected veh-
icle applications [Paper presentation]. Transportation
Research Board 98th Annual Meeting, Washington
D.C., United States.

Abstract

Connected vehicles are beginning to emerge that
communicate with signals and incorporate signal pre-
diction. For fixed time operations it is a deterministic
exercise to predict the signal state. However, under
actuated coordinated conditions, there is significant
stochastic variation on the phase activations due to
the random arrival of vehicles. As signal controllers
become more adaptive and intelligent, the predictions
also become more challenging.

This paper has two objectives:

1. Propose a diagram for visualizing the statistical distribu-
tion of traffic signal phases by time in cycle to provide
a framework for dialog between automotive and traffic
signal professionals regarding the stochastic variation of
actuated system that impact signal prediction algorithms.

2. Propose a methodology to evaluate the performance of a
connected vehicle application that predicts the time-to-
green as the vehicle approaches an intersection.

High-resolution traffic signal controller data over a
period of 6.5 hours is analyzed to illustrate the varia-
tions in phase occurrences. Data is compared for both
fixed-time and actuated coordinated conditions. This
data is illustrated graphically in a multiphase prob-
ability diagram that provides a quantitative framework
for dialog between traffic signal professionals and
vehicle manufacturers on the stochastic nature of traffic
signals when vehicle detection and adaptive signal
control logic is deployed. In addition to being a useful
tool for connected vehicle applications, this multiphase
probability diagram is useful for traffic engineers
deploying adaptive and other advanced traffic signal
systems to understand how green time is dynamically
allocated.

APPENDIX B. SIGNAL GREEN TIME
ESTIMATION METHOD FOR CONNECTED
VEHICLE-TO-INFRASTRUCTURE
APPLICATIONS

Mathew, J. K., Li, H., & Bullock, D. (2019). Signal
green time estimation method for connected vehicle-to-
infrastructure applications [Paper presentation]. IEEE

International Conference on Connected Vehicles and
Expo (ICCVE) 8th Annual Meeting, Graz, Austria.

Abstract

Connected and autonomous vehicles (CAV) are
becoming more integrated with traffic signal infra-
structure for V2I applications, such as traffic light
indication and automated driving. However, modern
traffic signal controllers allocate green time using
vehicle sensors and therefore the anticipated green time
has significant stochastic variation. This study develops
a methodology to characterize green time stochastic
variation for actuated-coordinated operation. During
the peak hours where the demand was highly consis-
tent, green intervals can be predicted with high cer-
tainty. In contrast, during midday and late evening,
stochastic variation increased significantly due to the
varying arrival patterns and associated real-time
responsiveness of the traffic signal controller. The
statistical characterization methods presented in this
paper are important for green light optimized speed
advisory (GLOSA) and eco-driving, technologies that
rely on having an accurate estimate of the beginning of
green (BOG) and end of green (EOG). Prior knowledge
on typical values of how early to stop or shutdown the
vehicles at a traffic signal approach can significantly
improve efficiency and manage emissions for CAV. The
paper concludes with a proposed graphical perfor-
mance measure chart that can be used by traffic
engineers and automotive vendors to frame the discus-
sion on traffic signal operation.

APPENDIX C. POPULATING SAE J2735 MESSAGE
CONFIDENCE VALUES FOR TRAFFIC SIGNAL
TRANSITIONS ALONG A SIGNALIZED
CORRIDOR

Mathew, J. K., Li, H., & Bullock, D. (2020). Popu-
lating SAE J2735 message confidence values for traffic
signal transitions along a signalized corridor [Manuscript
submitted for publication]. Transportation Research
Board 99th Annual Meeting, Washington D.C., United
States.

Abstract

The communication between connected vehicles and
traffic signal controllers is defined in SAE Surface
Vehicle Standard J2735. SAE J2735 defines traffic
signal status messages and a series of 16 confidence
levels for traffic signal transitions. This paper discusses
a statistical method for tabulating traffic signal data by
phase and time of day and populating the SAE J2735
messages. Graphical representation of the red-green
and green-yellow transitions are presented from six
intersections along a 4-mile corridor for five different
time of day timing plans. The case study provided
illustrates the importance of characterizing the stochas-
tic variation of traffic signals to understand locations,
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phases, and time of day when traffic indications operate
with high predictability, and periods when there are
large variations in traffic signal change times. Specific
cases, such as low vehicle demand and occasional actua-
tion of pedestrian phases are highlighted as situations
that may reduce the predictability of traffic signal
change intervals. The results from this study also opens
up discussion among transportation professionals on the
importance of consistent tabulation of confidence values
for both beginning and end of green signal states.
We believe this paper will initiate dialog on how to
consistently tabulate important data elements trans-
mitted in SAE J2735 and perhaps refine those
definitions. The paper concludes by highlighting the
importance of traffic engineers and connected vehicle
developers to work together to develop shared visions
on traffic signal change characteristics so that the in-
vehicle use cases and human-machine interface (HMI)
meet user expectations.

APPENDIX D. EFFECTS OF A PROBABILITY-
BASED GREEN LIGHT OPTIMIZED SPEED
ADVISORY ON DILEMMA ZONE EXPOSURE

Carranza, E. S., Kim, W., Li, H., Mathew, J. K.,
Sturdevant, J., & Bullock, D. Effects of a probability–
based green light optimized speed advisory on dilemma
zone exposure [Manuscript in preparation]. Lyles
School of Engineering, Purdue University.

Abstract

Green Light Optimized Speed Advisory (GLOSA)
systems have the objective of providing a recommended
speed to arrive at a traffic signal during the green phase
of the cycle. GLOSA has been shown to decrease travel
time, fuel consumption, and carbon emissions; simulta-
neously, it has been demonstrated to increase driver
and passenger comfort. Few studies have been con-
ducted using historical cycle-by-cycle phase probabil-
ities to assess the performance of a speed advisory
capable of recommending a speed for various traffic
signal operating modes (fixed-time, semi-actuated, and
fully-actuated). In this study, a GLOSA system based
on phase probability is proposed. The probability is
calculated prior to each trip from a previous week’s,
same time-of-day (TOD) and day-of-week (DOW)
period, traffic signal controller high-resolution event
data. By utilizing this advisory method, real-time com-
munications from the vehicle to infrastructure (V2I)
become unnecessary, eliminating data-loss related
issues. The effects of three different advice approaches
(conservative, balanced, and aggressive) on dilemma
zone exposure are analyzed. Proof of concept is carried
out by virtually driving through a test-route composed
of an arterial that had historical high-resolution traffic
signal event logs for a series of actuated-coordinated
traffic signals during different TOD and DOW. A com-
parison was performed between unadvised and GLOSA
advised trips obtained from approximately 486,000

simulated trajectories. Results were obtained by analyz-
ing the vehicle’s probability of stopping from utilizing
Traffic Engineering dilemma zone theory. Reductions
of 93% in the amount of hard brakings and 96% in the
number of crossings through red light were observed
with the proposed system. This data suggests the
feasibility of a probability-based advisory, as well as
the viability of utilizing the proposed GLOSA system to
minimize dilemma zone exposure.

APPENDIX E. LEVERAGING CONNECTED
VEHICLES TO PROVIDE ENHANCED
ROADWAY CONDITION INFORMATION

Li, H., Wolf, J. C., Mathew, J. K., Navali, N., Zehr,
S. D., Hardin, B. L., & Bullock, D. (2019) Leveraging
connected vehicles to provide enhanced roadway condi-
tion information [Manuscript submitted for publica-
tion]. Lyles School of Engineering, Purdue University.

Abstract

Real-time performance measures are important for
agencies to maintain their roadways during the winter
season. Sensing systems such as traffic cameras,
weather radar, stationary Road Weather Information
Systems (RWIS), pavement sensors, mobile weather-
sensing units (MARWIS), point speed sensors, and
third-party speed data have enabled operators to make
tactical data-driven decisions during inclement weather
events. However, infrastructure can be expensive to
deploy and maintain and may be sparse in rural areas,
while speed data alone may not provide enough fidelity
in borderline conditions.

This study looks at high-frequency brake pressure,
anti-lock brake (ABS) activation, wheel tick, traction-
control intervention, hazard lights, and windshield
wiper data from the in-vehicle bus to detect changes
in the vehicle and driver behavior during changing
winter road conditions. The data is reported to the
cloud via cellular communication and is viewable in
real-time using a map-based web dashboard. Three
winter weather events are assessed using in-vehicle data
collected from the February–March 2018 period.
MARWIS data and a user-based qualitative rating are
also used to ground-truth road friction and perceived
conditions. Data from hazard lights and wipers indicate
early perceived weather and traffic hazards, while ABS
and traction control only indicate severe cases of loss-
of-friction.

Using 2-sample Kolmogorov-Smirnov test, we found
high significance in the reductions of applied brake
pressures and rates of braking in winter versus fair
weather conditions before vehicle intervention is neces-
sary. As road conditions deteriorate, a driver may
reduce braking pressure by up to 60% during typical
braking operations, while the rate of braking also is
reduced by about 75%. Using the Brown-Forsythe test,
the variance of the rate of braking is also found to
exhibit statistically significant changes as road friction
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conditions deteriorate. The greatest increase in brake
rate variance is found to occur within the 20–39 mph
range at 110 Bar/sec2 and correlates to changes in
friction.

The paper concludes that pairwise comparison of
driver brake pressure may be a valuable data source
indicative of deteriorating road conditions before more
severe indicators such as traction control, anti-lock
brake, and/or hazard indicators are activated.

APPENDIX F. USING CONNECTED VEHICLE
DATA TO REASSESS DILEMMA ZONE
PERFORMANCE OF HEAVY VEHICLES

Li, H., Platte, T., Mathew, J. K., Smith, B.,
Salividar-Carranza, E., & Bullock, D. (2020). Using
connected vehicle data to reassess dilemma zone perfor-
mance of heavy vehicles [Manuscript submitted for
publication]. Lyles School of Engineering, Purdue
University.

Abstract

The rate of fatalities at signalized intersections
involving heavy vehicles is nearly five times higher than
for passenger vehicles. Previous studies have found that
heavy vehicles are twice as likely to violate a red light
compared to passenger vehicles. Current technologies
leverage setback detection to extend green time for a
particular phase and are based upon typical decelera-
tion rates for passenger cars. Furthermore, dilemma
zone detectors are not effective when the max out time
expires and forces the onset of yellow. This study
proposes the use of connected vehicle (CV) technology
to trigger force gap out (FGO) before a vehicle is
expected to arrive within the dilemma zone limit at max
out time. The method leverages position data from
basic safety messages (BSMs) to map-match virtual
waypoints located up to 1,0509 in advance of the stop
bar. For a 55 miles per hour (mph) approach, field tests
determined that using a 69 waypoint radius at 509

spacings would be sufficient to match 95% of BSM data
within a 5% lag threshold of 0.59s. The study estimates
that FGOs reduce dilemma zone incursions by 34% for
one approach and had no impact for the other. For
both approaches, the total dilemma zone incursions

decreased from 310 to 225. Although virtual waypoints
were used for evaluating FGO, the study concludes by
recommending that trajectory-based processing logic be
incorporated into controllers for more robust support
of dilemma zone and other emerging CV applications.

APPENDIX G. ANALYTICAL TECHNIQUES TO
USE HISTORICAL CONNECTED VEHICLE DATA
TO ASSESS PLATOONING POTENTIAL ON
INTERSTATE CORRIDORS

Kim, W., Li, H., Mathew, J. K., & Bullock, D.
(2020). Analytical techniques to use historical connected
vehicle data to assess platooning potential on interstate
corridors [Manuscript submitted for publication]. Lyles
School of Engineering, Purdue University.

Abstract

There are multiple vendors that now provide real-
time probe data based interstate speed measurements at
sub-1 mile, 1-minute fidelity. This paper presents an
analytical tool for visualizing interstates traffic condi-
tions to validate congestion identified by the probe data
with cameras at select locations. This visualization tool
is then applied to the I-70 corridor in Indiana, an
important east-west freight corridor. The tool is used to
screen at both a strategic and tactical level, the
‘‘platoonability’’ of sections and time periods on I-70.
Case studies are presented that illustrate recurring
congestion, congestion associated with crashes, and
congestion associated with moving work zones and
maintenance operations. The 15-minute median speed
heat map was recommended as a quick and robust
screening tool. A series of simulated trajectories, using
1-minute segment speed archives, were used to demon-
strate the robustness of this strategy by analyzing the
frequency of speed changes greater than 10 mph as well
as how often the speeds dropped below 55 mph. The
paper concludes with a recommended visualization of
median speeds for identifying strategic locations and
time periods that platooning may be viable and a
recommendation for a 10-mile real-time tactical ‘‘look
ahead’’ visualization to identify likely areas of conges-
tion or stopped traffic.
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